Topic Model on Stack Overflow Data

Benjamin Dutton, Liuyi Hu

1 Introduction

Document clustering has been extensively studied in information retrieval. There are distance-
based clustering algorithms which use a similarity function to measure the closeness between
the text objects. Agglomerative clustering algorithms like hierarchical clustering and parti-
tioning algorithms such as K-means are typical distance-based clustering algorithms.

Another popular approach is probabilistic document clustering and topic modeling is one
of them. The idea behind probabilistic document clustering is to assume that the data were
generated by some probabilistic process and then to infer the parameters of the process.
Most topic modeling methods attempt to learn the above parameters using maximum like-
lihood methods, or some refinement of this principle such as maximum a posteriori (MAP)
probability. There are two basic methods which are used for topic modeling, which are Prob-
abilistic Latent Semantic Indexing (PLSI) (Hofmann| |1999) and Latent Dirichlet Allocation
(LDA)(Blei et al., 2003 respectively. PLSI has the disadvantage that the number of model
parameters grows linearly with the size of the collection. Therefore, LDA has been used more
extensively than PLSI. In LDA framework, each document is modeled as a mixture over an
underlying set of topics and each topic is, in turn, modeled as an mixture over an underlying
set of topic probabilities (a latent meta-category of words). The topic probabilities thus
provide an explicit representation of a document. Besides, the multinomial indicator for
each words in a document, by the idea of data augmentation, directly shows the probability
of this word that belongs to a specific topic.

In this project, we use LDA model for document clustering of the Stack Overflow (S/O)
dataset and apply the collapsed Gibbs sampling method (Griffiths and Steyvers, 2004)) for the
estimation and inference. In section 2, we describe the LDA model and then we introduce the
collapsed Gibbs sampling method in section 3. In section 4, we talk about the interpretation
of the topic model and go over the details of the real data and how we pre-process the data
in section 5 and 6. In section 7, we describe how we implement the collapsed Gibbs sampling
with streaming data in Scala. And in the last section we demonstrate the results of our topic

model.

OnOaCannC

Ng

Figure 1: Graphical model representation of LDA.

2 LDA Model

Latent Dirichlet Allocation(LDA) was originally introduced by Blei et al. (2003)), which is
based on the intuition that each document contains words from multiple topics; the propor-
tion of each topic in each document is different, but the topics themselves are the same for
all documents.

Let D denotes the number of documents and Ny, d = 1,..., D denotes the length of each
document. And let V' be the dimension of the vocabulary. The LDA assumes the following

generative process:

1. Choose 64 ~ Dir(a) , where d € {1,..., D} and Dir(ex) is the Dirichlet distribution

for parameter o
2. Choose ¢, ~ Dir(B) , where k € {1,..., K}
3. For each of the word positions d, i, where i € {1,...,Nys} ,and d € {1,...,D}

(a) Choose a topic zgq; ~ Multinomial(6y)

(b) Choose a word wg; ~ Multinomial(¢, d)

Figure 1] illustrates the process of generating words in LDA model. The joint distribution is

thus
Ng

K D
P(Data | . 8) = [] P(¢y |) [P(0u| @) [Plwas | 20 = ks b Pzas = I | 6a).
d=1

k=1 i=1

Making inference on the LDA model involves both the document-topic distribution pa-
rameters @, and the topic-word distribution parameters ¢,. Two common estimation meth-
ods are variational Bayes (Blei et al. 2003) and collapsed Gibbs sampling (Griffiths and
Steyvers, 2004). In our analysis, we adopt collapsed Gibbs sampling method and we give a

detailed description of this method in the following section.

2

3 Collapsed Gibbs Sampling

A collapsed Gibbs sampler marginalizes over one or more variables when sampling for some
other variable to make computation convenient. For LDA model, the collapsed Gibbs sam-
pling method first integrates out document-topic distribution parameters 6, and the topic-
word distribution parameters ¢, and consider the posterior distribution over the assignments
of words to topic P(z | w) instead. Then estimation of 8, and ¢, can be obtained by ex-
aming the posterior distribuion P(z | w) .

What collapsed Gibbs sampling essentially does is to iteratively sample a topic for every

token in the document from a full conditional probability:
Cia + Bu
Zw/(cl;,:uzf + 5w’) 7

P(Zd’i =k | Wﬁwd,i’ Z_'Zd,i’ avﬁ) (S8 (CI?_i + Oék)

where wg; is the ith word in document d, C’,f’fi is number of words in document d assgined
to topic k£ in not including the current ith word and C’k;z is the number of type w that are
assigned to topic k& not including the current ith word.

With a set of samples from p(z | w), we can estimate ¢, and 8, by:

n Ckw+/6w
o= TPy =1,...,V,
¢k, Ck—i_zwlﬁw’
and i
A +
Opp= —k 78 b1, . K,
ik Cd+2k/ak/

where Cj,,, is the number of tokens of type w assigned to topic k, C}, is the number of words
assigned to topic k, C¢ is the number of words from topic k in document d and C? is the

number of words in document d, i.e. the length of document d.

4 Model Interpretation

When fitting a topic model, the most important question is: What is the meaning of each
topic? Since each topic is characterized by its distribution over words, we need to determine
the most useful terms for interpreting a given topic. The typical way is to examine the most
probable terms in the topic. The problem with interpreting topics this way is that common
terms in the whole corpus might turn out to be the most probable words in some topics,
making it hard to differentiate the meanings of these topics. Therefore, people propose
ranking the terms in the topic in terms of both frequency and exclusivity. [Taddy| (2011])
used lift to rank the terms for each topic. The lift is defined as P(w | k)/p(w), i.e. ratio

of a terms probability within a topic to its marginal probability across the corpus. The

ranking of the globally frequent terms are decreased when using list, however, this measure
can also be noisy because it gives very high rank to rare terms. In order to overcome this
problem, Bischof and Airoldi (2012) came up with a measure called FREX score, which is a
weighted harmonic mean of a terms rank within a given topic with respect to frequency and
exclusivity.

Recently, |Sievert and Shirley| (2014)) introduced a similar measurement called relevance,

which is defined as
P(w | k)
p(w)

where A\ is a weight parameter between 0 and 1. This measurement of a weighted average

Relevance(w, k | \) = Aog P(w | k) + (1 — A) log (1)

of frequency and lift. When A\ = 1, then ranking based on relevance is equivalent to ranking

based on frequency; when A\ = 0, then relevance gives the same ranking results as lift.

5 Data

Stack Overflow is a popular programming question-answer site. Users of S/O ask program-
ming and tech-related questions that other members of the community can answer. Both
questions and answers can be voted on to help identify important questions and insight-
ful answers and questions are tagged by moderators by the topics they pertain to. Users
with good questions and answers get rewarded by accumulating badges that demonstrate
their proficiency in various domains. Since at least 2009, S/O has made their data publicly
available (Atwood, 2009).

S/O uses a SQL database behind the scenes so their data is organized into tables, 8
of which are publicly available: Badges, Comments, PostHistory, PostLinks, Posts, Tags,
Users, and Votes. We focused exclusively on the Posts (which includes both the questions

and answers) since this is where most of the semantic content lies.

6 Pre-Processing

One of the challenges of applying NLP techniques to S/O data is that English words are
often mixed together with code. Since S/O stores their posts with HTML tags, as a pre-
processing step, we remove all code between <code> HTML tags. Unfortunately, these tags
aren’t always used so there is still some code that remains. We also attempted to filter out
numbers, which wasn’t entirely successful but led to some interesting results demonstrating
the power of LDA - topics were found that correspond almost entirely to the notion of a

number.

After removing the HTML and code, we took the 10,492 most commonly occurring words
across all Posts and ran them through the SMART information retrieval system to remove
some common stop words. After pre-processing, the data consists of D = 4000 documents,
a vocabulary of V' = 10004 terms, and W = 128639 total tokens in the corpus.

Figure [2| shows the word cloud of the top 1000 frequent words in the corpus and Table

summarizes the counts of the top 10 frequent words.

|Vet| me partnUMbe I"rl_jz Word Count in the whole corpus
isnt? t =ql d 1156
userx— d a q code
Called “fleld . file 805
LINN br 745
bunt{_t pi 798
? dont 697
dbrea\run erte S n, T' work 677
. et 3 data 655
Xml asplt local det:
h d 639
Lé; d Basresult £ hec:k gi: 800 616
g server
kind chentnlce iog sort S e rve r net 590
Figure 2: Word cloud of top 1000 frequent Table 1: Frequency table of the top
words in the corpus 10 words in the corpus

7 Implementation

We organized our data into a MySQL database running on a separate server. In order to
take advantage of this project as a learning opportunity, we decided to try and implement
the algorithm discussed in [Yao and McCallum| (2009) (henceforth referred to as ”Efficient

Gibbs”), which relies on Gibbs sampling, in Scala and run it on Spark - two technologies

we were relatively unfamiliar with which have become popular for big data. We soon real-
ized that Spark wasn’t very suitable for Efficient Gibbs because the algorithm is inherently
sequential - topics get assigned sequentially during each Gibbs sweep. So, we ended up not
using Spark, but still implementing the algorithm in Scala.

Unfortunately, the code was pretty slow and for just 1,000 posts, took roughly 33 hours.
I don’t think this is a failure of the algorithm - simply the effect of poor understanding
of how to write efficient Scala code. Nevertheless, the code worked, but unfortunately, the
prior parameters we chose - a and [corresponding to the document-topic and topic-word

distributions, respectively, were too small. These parameters act as ”smoothing parameters”

and because their values were too small, the topic-word distributions were very sparse,
leading to poor results. If we had used a larger number of documents, this would have
helped, but would have taken much more time to execute.

In the meantime, we took our pre-processed text and tried using R for LDA, which took
a fraction of the time. As a result, we decided to only use the Scala code for pre-processing

and then use the 1da library in R to do the inference.

8 Results

8.1 Topic Number Selection

For fitting the LDA model to a given document collection, the number of topics needs to be
fixed a-priori. Collapsed Gibbs sampling method also requires specification of the parameters
of the prior distribution, and |Griffiths and Steyvers| (2004)) suggest using o = 50/ K (K is the
number of topics) and § = 0.1 for the symmetric Dirichlet priors, Therefore, in our analysis,
we follow the suggestion and use a symmetric Dirichlet with 5, = 0.1,w = 1,...,V for all
word types and o = 50/K,k = 1,..., K. To select the optimal number of topics K, we
have tried K = 10,20, ..., 100.

Figure [3| shows the similarity between topics when K = 20,50,70,100. The topics are
represented by circles in the two-dimensional plane whose centers are determined by com-
puting the distance between topics, and then by using multidimensional scaling to project
the inter- topic distances onto two dimensions (Chuang et al., [2012)). The size of the circles
represent each topics overall prevalence, and the topics are sorted in decreasing order of
prevalence. We can see from the plots that many topics are very close to each other when
the topic number K = 70 or K = 100. After a close examination of the meaning of each
topic using different number of topics, K = 50 tends to give us a better interpretation of
the model. Therefore, we end up using 50 topic numbers and we elaborate on the details of

topic interpretation when K = 50 in the following section.

8.2 Topic Interpretation

In this section, we talk about the results when fitting a 50-topic model to the Stack Overflow
data.

For the topic interpretation, we need to figure out the most useful terms that can be
representative of each topic. Here we use relevance introduced in Sievert and Shirley]| (2014))
to quantify the usefulness of terms in each topic. First we can see how different values of
A in () result in different ranked term lists in Figure [l In this figure, the terms Topic 1

are ranked based on the relevance and corpus-wide frequency and topic-specific frequency

Intertopic Distance Map (via multidimensional scaling)
Intertopic Distance Map (via multidimensional scaling)

PC2
FC2
12
"
5
10 20
4 a5
4
! 3
8
13 v 9
PC1 18
PC1
= 18 .
1 &
a0 23
15 s 8 7
w
1 T o2
2 4 2
20 A 14
3
Marginal topic distristion Marginal tapic distristion
% 2%
&% 5%
105 10%
(a) K = 20

Intertopic Distance Map (via multidimensional scaling) Intertopic Distance Map (via multidimensional scaling)

PC2

FC2

2
3
s 17
&
12 ° 2 g
2
1%
18
4
20
FCi FC1
18
7 1
1
7
"
1

Marginal topic distribtion Marginal topic distibution

2% 2%

55 B

10% 10%

(d) K = 100

Figure 3: Inter-topic distance map with different topic number specification.

are shown as well. The blue bar chars indicate the frequency over the whole corpus and
the red ones represent the frequency within the selected topic. i.e. Topic 1. For example,
when A = 1, the term ”code” is selected as the top 30 relevant terms; however, when A = 0,
the term ”code” is no longer in the top list. This is because the term ”code” is a globally
frequent term, in fact it is the most frequent term over the whole corpus, and its rank is
decreased when A = 0 (ranking solely by lift).

Table [2|lists out the top 15 relevant words to 6 selected topics when topic number K = 50.
Here the relevance are defined by when A are set to 0.33. For example, the most relevant
words in Topic 13 are ”svn”, ”subversion”, ”commit”, "git”, "repository” and so on. All
of these are key words for version control. And in Topic 29, the top terms are ”image”,
"element”, ”color”, "background”, "height”, "left” and so on, these can be interpreted as
topics related with CSS.

Rank Topic 2 Topic b Topic 13 Topic 17 Topic 28 Topic 29
1 table visual svn server vista image
2 field studio subversion request virtual element
3 column microsoft commit http laptop color
4 row dll git port windows background
5 rows windows repository ip monitor height
6 columns net merge client 64 left
7 names framework revision local Xp colors
8 select bin version host screen font
9 wvendor debug control response bit width
10 primary msbuild branch vpn ram text
11 records installer cvs ssl pc 0000
12 company win working clients prefer top
13 record cs diff header environment red
14 guid debugger copy url running pixel
15 location assembly source ssh office space

SQL database Microsoft Version Control Network Microsoft OS’s/PCs CSS

Table 2: Top 15 words relevant to 6 selected topics under A = 0.33 and K = 50.

9 Limitations and future works

We apply LDA method in the sense of unsupervised learning and seeks to discover topics.

In many situations, label information are given. For example, for the Stack Overflow data,

we have tags for each posts. In other words, we have access to the content of topics in
advance. It thus becomes a problem in supervised learning (classification). Mcauliffe and
Blei| (2008)) propose a supervised LDA method to deal with this problem. It has a very
similar structure to LDA in general. Therefore, for future works, we can think of how to
combine tag information to the topic models.

More generally, LDA can be applied to model other large scale discrete data. This
generalization is meaningful since it introduced a useful method to deal with discrete data
by building a probability model instead of defining discrepancy matrix. For example, for
image data processing and genetic studies, LDA and sLDA can be useful tool to detect

intrinsic clusters, as well as classification problems.

References

Atwood, J. (2009). Stack overflow creative commons data dump. http://blog.

stackoverflow.com/2009/06/stack-overflow-creative-commons-data-dump/.

Bischof, J. and Airoldi, E. M. (2012). Summarizing topical content with word frequency
and exclusivity. In Proceedings of the 29th International Conference on Machine Learning
(ICML-12), pages 201-208.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of
machine Learning research, 3:993-1022.

Chuang, J., Ramage, D., Manning, C., and Heer, J. (2012). Interpretation and trust: Design-
ing model-driven visualizations for text analysis. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, pages 443-452. ACM.

Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the National
Academy of Sciences, 101(suppl 1):5228-5235.

Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in information
retrieval, pages 50-57. ACM.

Mcauliffe, J. D. and Blei, D. M. (2008). Supervised topic models. In Advances in neural

information processing systems, pages 121-128.

Sievert, C. and Shirley, K. E. (2014). Ldavis: A method for visualizing and interpreting
topics. In Proceedings of the Workshop on Interactive Language Learning, Visualization,

and Interfaces, pages 63-70.

http://blog.stackoverflow.com/2009/06/stack-overflow-creative-commons-data-dump/
http://blog.stackoverflow.com/2009/06/stack-overflow-creative-commons-data-dump/

Taddy, M. A. (2011). On estimation and selection for topic models. arXiv preprint
arXiw:1109.4518.

Yao, L., Mimno, D., and McCallum, A. (2009). Efficient methods for topic model inference on
streaming document collections. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 937-946. ACM.

10

Top-30 Most Relevant Terms for Topic 1 (2.6% of tokens)
500

1] 100 200 300 400
br *

so [
args [l
fostring -
pool [
return I
foreach -
timespan .
tengtn [N
elem I
n [
stringbuilder .
readline I

clearer I
solit -
pubiic I
double -
hundred |
triple I
preserved I
pools |
sgleconnection I

‘Overall term frequency
_ Estimated term frequency within the selected topic

(a) A=0

Top-30 Most Relevant Terms for Topic 1 (2.6% of tokens)

[+] 200 400 B00
mF

return
srring (I
function _
int [
Y
public _
ot [
var [
lengtn [N
static -
o I
code -
void [
null -
sb -
document -
double -
end Il
ool [l
args [l
tosiring .
foreach .
split .
takes .
rewrns [l
style .
replace .
siringouilder l
comma [l

800

Owerall term frequency
_ Estimated term frequency within the selected topic

) A=1
Figure 4: Top-30 Most Relevant Terms for Topic 1 using (a) A =0 and (b) A =1

11

	Introduction
	LDA Model
	Collapsed Gibbs Sampling
	Model Interpretation
	Data
	Pre-Processing
	Implementation
	Results
	Topic Number Selection
	Topic Interpretation

	Limitations and future works

