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Introduction

Police forces have significant interest in being able to
predict regions in which crimes are likely to occur so
that preventive measures may be employed in both the
short-and long-term. This project aims to model both
the temporal and spatial dependencies often exhibited
by street crimes in order to make such predictions.

Data

• Street crime records
The street crime records come from calls-for-service
(CFS) records provided by the Portland Police
Bureau (PPB) for the period of March 1, 2012
through August 31, 2015. These records contain the
coordinates as well as date of the street crime.

• Areal units
I divide the Portland Police District into 484
rectangles called "cells" and then aggregate the
crime locations within the same cell together.
Figure 1 shows the average monthly street crime
counts over the cells.

• Demographic covariates
The demographic information comes from
Geographic Information Services (GIS). I consider
the following demographic covariates: (1)
population density (2) unemployment rate
and (3) white proportion.

Figure 1: Average monthly street crime counts over cells.

Methods

• Model 1
The temporal variation of crimes typically follows
patterns familiar in time series analysis and
Figure 1 implies that neighboring areas share
some crime dynamics. Therefore I consider the
following spatiotemporal model:
log (yt(s) + 1) | µt(s) = µt(s) + xTt (s)β + εt(s),
where
- yt(s) is the total street crime during month t and in cell s
- εt(s) is iid Normal (0, σ2

e)
- µ1(s) is a GP with mean 0, variance σ2

s and Matern
correlation with range ψ and smoothness ν

- µt(s) | µt−1(s) is a GP with mean ρµt−1(s), variances
σ2
s(1− ρ2) and Matern correlation with the same

parameters as µ1

• Model 2
Crime rates often vary seasonally, with a higher
rate during warmer months of the year. Figure 2
shows the monthly counts of street crime from
March 2012 to July 2015 for 4 selected cells. We
can see that in all three years, there is a peak
during summer time. So to capture the seasonal
effect of crime, Model 2 includes the indicator of
month as covariates besides the demographic
covariates.
log (yt(s) + 1) | µt(s) = µt(s)+xTt (s)β+zt(s)Tγ+εt(s),
where zt(s) is the indicator vector for the month.

Figure 2: Monthly counts of street crime from March 2012 to
July 2015.

Model Comparison

I use all data prior to August 2015 as training data
and use August 2015 as test data. Table 1 sum-
marizes the performance of two models on the test
data. We can see the Model 2 outperforms Model 1
in terms of coverage and mean squared error.

Model Coverage Mean squared error
1 96.9% 0.182
2 97.2% 0.179

Table 1: Model comparison.

Results

Table 2 summarizes the parameter estimation using
Model 2. Figure 3 shows the box-plot of posterior
sample for month estimate (month 12 is the refer-
ence group). This implies that there is a seasonal
effect and that the summer time tends to have more
street crimes than winter time.

Parameter Estimate (Std.Error)
σe (Nugget SD) 0.419 (0.003)
σs (Partial sill (SD)) 0.945 (0.035)
ρ (AR coefficient) 0.999 (0.000)
ψ (Matern range) 2.573 (2.282)
ν (Matern smoothness) 0.926 (1.718)
population density -0.029 (0.018)
unemployment rate 0.186 (0.015)
white proportion -0.271 (0.063)

Table 2: Paramter estimate for Model 2. Standard errors are
given in the parenthesis.

Figure 3: Box-plot of the posterior sample for month estimate.

• Prediction Accuracy Index (PAI)

PAI = 398/3349
2/484

= 28.8.

Figure 4 and 5 are the maps of predicted and
observed values of street crimes counts during
August, 2015 in each cell after log transformation.

Figure 4: Predicted values for August 2015 after the log trans-
formation.

Figure 5: True values for August 2015 after the log transforma-
tion.

Limitations and Future Works

•For the response data, I took log-Gaussian
transformation. Instead, we can also model the
count directly as a Poisson process and assume
the Poisson rate has a seasonal effect.

• I pre-determined the size of the cells in my
analysis. To find the optimal size of the cells that
maximizes the PAI score, we can use
cross-validation.


