
Identify Characters from Google Street View Pictures

Liuyi Hu, Lin Su, Alison Wu

1 Introduction

Street view recognition is a problem that plays an important role in our life. For example,

the ability to automatically transcribe an address number from a geo-located patch of pixels

and associate the transcribed number with a known street address helps pinpoint, with a

high degree of accuracy, the location of the building it represents. This is particular useful

in places where street numbers are otherwise unavailable or places such as Japan and South

Korea where streets are rarely numbered in chronological order but in other ways such as

the order in which they were constructed, a system that makes many buildings impossibly

hard to find, even for locals.

But images obtained from Google Street View pose a formidable challenge for character

recognition. Unlike the traditional optical character recognition with pure bit map inputs,

the images from street view are presented in many different fonts, styles, colors and orienta-

tions, and there are additional environmental factors at play such as lighting and shadows.

The objective of this project is to come up with a good approach to identify characters

from Google Street view pictures, which is an active competition at www.kaggle.com. In our

work, we used Naive Bayes, Support Vector Machine based on Histogram of Oriented Gra-

dients (HOG), and Random Forest. We evaluated the performance of these three methods

on the test dataset on www.kaggle.com, and SVM based on HOG features reached the best

performance in terms of prediction accuracy.

2 Data Processing

The datasets we use are Google Street View images of characters taken from the Chars74K

data [3]. There are 6283 labeled images in the training set and 6220 unlabeled images in the

test set. Our goal is to classify images in the test set into 62 categories (0-9, a-z, A-Z) based

a predictive model built using the training set.

1

We decided to pre-process the images to reduce as much noise as possible to increase the

accuracy of predictive models. The data processing stage consists of the following steps. (1)

Given an original RGB image from the original data set, it was converted to a greyscale

image. (2) The greyscale image was then converted into a binary image based on threshold

computed by the Otsu’s method[8] to minimize the intraclass variance of the black and white

pixels. (3) The boundary pixels of binary image was evaluated to reassign the character

pixels with 1 and background pixels with 0. (4) The binary image went through repeated

process of cropping and removal of connected components that was less than p pixels and

connected to the boundary until no such component exists. (5) Finally, the image was

cropped and resized to 32*32. Through the image processing step, we were able to increase

our prediction accuracy from the benchmark of 0.429 to 0.692 using Julia random forest

model and parameters provided by Kaggle[9]. Figure 1 shows some of the images before and

after processing.

(a) Before image processing

(b) After image processing

Figure 1: Examples of Google Street View images before and after processing

3 Models and Methods

3.1 Naive Bayes

We used 32*32 resized data for this model. Each image is a 32*32 bitmap in which each

element is a binary value indicating one pixel of black or white.

If each bitmap is divided into blocks of m*m, and the number of white pixels are counted in

each block, then for each image, we get a vector x = (x1, . . . , xd), where d = 32∗32
m2 . Possible

choice of m are m = 2 or m = 4. We used the Dirichlet-Multinomial distribution to model

the distribution of x[10]. That is, suppose x ∼Mutinomial(p), where p = (p1, . . . , pd), and

p follows a Dirichlet distribution with parameter vector α = (α1, . . . , αd), where αj > 0. So

2

the prior density of p is

π(p) =
Γ(|α|)∏d
j=1 Γ(αj)

d∏
j=1

p
αj−1
j

where |α| =
∑d

j=1 αj. And therefore the Dirichlet-Multinomial distribution of x is

f(x|α) =

(
|x|
x

) ∏d
j=1(αj)xj
(|α|)|x|

where |x| =
∑d

j=1 xj, and (a)k =
∏k−1

i=0 (a+ i) = Γ(a+k)
Γ(a)

.

Given independent data x1, . . . ,xn, the log-likelihood of α is

L(α) =
n∑
i=1

ln

(
|xi|
xi

)
+

n∑
i=1

d∑
j=1

[lnΓ(αj + xij)− lnΓ(αj)]−
n∑
i=1

[lnΓ(|α|+ |xi|)− lnΓ(|α|)]

Using Newton’s method or EM or MM algorithm, we can calculate the MLE of α given data

x1, . . . ,xn.

In our case, there are 62 categories. Using the training data, we can get an MLE of α

for each category. Then, we can construct a simple Bayesian rule to recognize each image in

the test set, which is,

x 7→ argmax
k

π̂kf(x|α̂k)

where x ∈ test set, k = 1, 2, . . . , 62, and prior probability π̂k is the proportion of category k

in the training set.

Table 1 shows the accuracy rate from 4-fold cross-validation of the training set. Among

all parameters chosen, m = 2 has the best performance, therefore, we use it in the final

prediction.

block size(m) 4-fold CV Accuracy

2 0.6069(.0156)

4 0.5903(.0091)

†Standard errors are given in parentheses

Table 1: Summary of accuracy using Dirichlet-Multinoial model

3

3.2 SVM using HOG features

3.2.1 HOG

Histogram of oriented gradients (HOG) is a feature descriptor used to detect objects in com-

puter vision and image processing. It was first described by Navneet Dalal and Bill Triggs[4].

The essential thought behind the Histogram of Oriented Gradient descriptors is that local ob-

ject appearance and shape within an image can be described by the distribution of intensity

gradients or edge directions. To obtain the HOG features, we first divide the image into small

connected regions called cells, and compute a histogram of gradient directions for each cell

or edge orientations for the pixels within the cell. Groups of adjacent cells are considered as

spatial regions called blocks. The grouping of cells into a block is the basis for grouping and

normalization of histograms. And the set of these block histograms represents the descriptor.

For different picture sizes, the cell size is chosen differently. Figure 2 shows the original

picture we are processing and extracted HOG descriptors using different cell sizes. The vi-

sualization shows that a cell size of [16 16] does not encode much shape information, while

a cell size of [4 4] encodes a lot of shape information but increases the dimensionality of

the HOG feature vector significantly. A good compromise is a cell size of [8 8]. This size

setting encodes enough spatial information to visually identify a digit shape while limiting

the number of dimensions in the HOG feature vector, which helps speed up training. During

training process, we have tried all these three different cell sizes, and cell size of [8 8] performs

best in terms of prediction accuracy.

3.2.2 SVM

Support Vector Machines (SVM) is a state-of-the-art learning machine based on the struc-

tural risk minimization induction principle, and has been widely applied to machine vision

fields such as character, handwriting digit and text recognition. SVM functions by projecting

the training data x in the input space to a feature space of higher (infinite) dimension by

mapping φ(x). The mapping can be implicitly defined by introducing the so-called kernel

function K(xi, xj) which computes the inner product of vectors φ(xi) and φ(xj).The typi-

cal kernel function includes the linear function K(xi, xj) = xTi xj, the radial basis function

K(xi, xj) = exp(
||xi−xj ||2

σ2) and the polynomial function K(xi, xj) = (xTi xj + 1)p. However,

SVM classification is essentially a binary (two-class) classification technique, which has to be

modified to handle the multi-class tasks. The conventional way is to decompose the M-class

problem into a series of two-class problems and construct several binary SVM learners.

The earliest and one of the most widely used implementations is the ”one-vs-all” method[1],

4

(a) Original picture

(b) CellSize = [4 4] (c) CellSize = [8 8] (d) CellSize = [16 16]

Figure 2: HOG Features

which constructs M SVM classifiers with the ith one separating class i from all the remaining

classes, i.e., the ith SVM is trained with all of the examples in the ith class with positive

labels and all the other examples with negative labels. Mathematically the ith SVM solves

the following problem that yields the ith decision function fi(x) = wTi φ(x) + bi:

minimize :
1

2
||wi||2 + C

N∑
l=1

εil

subject to : y∗j (wiφ(xj) + bi) ≥ 1− εil, εil ≥ 0

where y∗j = 1 if yj is in class i and y∗j = −1 otherwise.

At the classification phase, a sample x is classified as in the class k whose fk(x) produces

the largest value, i.e.

k = argmax
i=1,··· ,M

fi(x) = argmax
i=1,··· ,M

wTi φ(x) + bi

Another major method is called the ”one-vs-one” method. This idea was first introduced

in[6] and the first use of this strategy on SVM was by Krebel[7]. The method constructs
M(M−1)

2
binary SVM classifiers, each for every distinct pair of classes. Each of binary clas-

5

sifiers takes sample from one class as positive and samples from another class as negative.

Mathematically the binary SVM between class i and class j solves the following problem:

minimize :
1

2
||wij||2 + C

N∑
k=1

εk

subject to : y∗k(wijφ(xk) + bij) ≥ 1− εk, εk ≥ 0

where xk are the sample from class i or class j, and y∗k = 1 if yk is from class i and y∗k = −1

if yk is from class j.

For prediction at a point, each classifier is queried once and issues a vote. The class with

the maximum number of votes is the winner.

In order to evaluate the performance of these two methods, we implemented three differ-

ent kernel functions: Linear, Polynomial and Radio Basis Function(RBF). Each of them

were employed to carry out ”one-vs-one” method and ”one-vs-all” method. Table 2 gives

a summary of the prediction accuracy based on a 4-fold cross validation. It is evident that

the ”one-vs-all” approach to multiclass classification has exhibited a better prediction result

than ”one-vs-one” approach. And among all the combinations, the RBF SVM learner with

”one-vs-all” methods has the highest prediction accuracy.

SVM Kernel one-vs-one one-vs-all

Linear 0.7134(.0069) 0.7254(.0138)

RBF 0.6040(.0130) 0.7457(.0072)

Polynomial 0.7161(.0109) 0.7313(.0099)

†Standard errors are given in parentheses

Table 2: Summary of accuracy using different SVM learners

3.3 Random Forest

Random forest classification is an ensemble learning method that uses bootstrap aggrega-

tion techniques and random selection of features. The algorithm was first developed by

Leo Breiman and Adele Cutler. In a random forest model, classification trees are fitted

repeatedly on bootstrap samples, the final classification decision is the majority votes of the

trees. Random forest is effective on large data set with thousands of variables. It is robust

to outliers and missing values in the data[2]. Unlike decision trees, random forests do not

6

overfit as number of trees increases. Predictions can be made quickly once the model is built.

Given a training set of predictors X = {x1, . . . ,xn} with labels Y = {y1, . . . ,yn}, we

construct a random forest of B trees, {T1, . . . , TB}, by building tree Tb with the following

steps:

(1) Draw a bootstrap sample X∗b , Y
∗
b of size N from the training set.

(2) Grow a random-forest tree Tb by repeatedly select the best variable among the m � d

input variables to split the terminal nodes until the minimum node size is reached.

For a new predictor x, the classification is the majority vote across all B trees [5].

We fit random forest model on processed Street View images vectors and the corresponding

HOG feature vectors respectively using the DecisonTree package in Julia. The parameters

in the model are the number of trees B, number of selected feature m, and subsample size N.

Using 4 fold cross validation on the training set. Table 3presents the best prediction result

using 50 features, 90 trees and 70 % of data as bootstrap subsample.

Data 4fold CV Accuracy

Processed Images 0.7075(.0176)

HOG Features 0.7142(.0104)

†Standard errors are given in parentheses

Table 3: Summary of accuracy using Random Forest

4 Results

Table 4 shows the best prediction accuracy using 49 % of the test data (results are provided

by www.kaggle.com). SVM using HOG with RBF kernel and one-vs-all method has the best

performance. Figure 3 shows the best ranking we have using SVM as of April 27, 2015 (our

account name is Brian).

7

Method Accuracy Ranking by Apr.27, 2015

Naive Bayes 0.6057 26

Random Forest 0.7327 7

SVM* 0.7660 3

Julia Random Forest Benchmark 0.4293 57

Julia kNN Benchmark 0.4058 62

Table 4: Summary of accuracy on test set

Figure 3: Best Ranking using SVM

5 Conclusions

Overall, SVM classification using RBF kernel and HOG features gives the best result among

all models. Image processing and HOG feature are also key steps to increase prediction

accuracy. By examine the confusion matrix, we noticed that most of the classification errors

were due to misclassification of characters with similar shape like ”1”(one) and ”l” (lower

case L), or confusion between lower and upper case letters such as ”s” and ”S”, ”c” and ”C”.

Table 5 gives the top five misclassified errors and their share of classification errors. Most

of these pairs were even impossible to distinguish by human eyes. We could further increase

our prediction accuracy if the characters were given in their original context. In the future,

we would also like to try to use the popular Neural Network Model for this classification

problem.

8

True Value Prediction Misclassification Rate

o O 0.0121

s S 0.0110

i I 0.0105

0(zero) O 0.0080

l I 0.0080

Table 5: Top 5 Misclassification from Random Forest

9

References

[1] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun, U.

A. Muller, E. Sackinger, P. Simard and V. Vapnik. Comparison of classifier methods:

a case study in handwritten digit recognition. In Proceedings of the 12th International

Conference on Pattern Recognition and Neural Networks, Jerusalem, pages 77-87, IEEE

Computer Society Press, 1994.

[2] L. Breiman. Random Forests Machine Learning 45.1 (2001): 5-32.

[3] T. E. de Campos, B. R. Babu and M. Varma. Character recognition in natural images,

Proceedings of the International Conference on Computer Vision Theory and Applica-

tions (VISAPP), Lisbon, Portugal, February 2009.

[4] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In

CVPR, pages 886-893, 2005.

[5] T. Hastie, R. Tibshirani,and J. H. Friedman. Random Forests. The Elements of Sta-

tistical Learning: Data Mining, Inference, and Prediction. New York: Springer, 2009.

587-89.

[6] S. Knerr, L. Personnaz, G. Dreyfus. Single-layer learning revisited: a stepwise procedure

for building and training a neural network. In J. Fogelman, editor, Neurocomputing:

Algorithm, Architectures and Applications. Springer-Velag, 1990.

[7] Ulrich H.-G. Kreel. Pairwise classification and support vector machines, Advances in

kernel methods: support vector learning, MIT Press, Cambridge, MA, 1999.

[8] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE Trans.

Sys., Man., Cyber. 9 (1): 6266, 1979

[9] L. Tandalla First Steps With Julia. (n.d.). Retrieved April 26, 2015, from

https://www.kaggle.com/c/street-view-getting-started-with-julia/details/julia-tutorial.

[10] H. Zhou, http://hua-zhou.github.io/teaching/st758-2014fall/ST758-2014-HW6.pdf.

10

	Introduction
	Data Processing
	Models and Methods
	Naive Bayes
	SVM using HOG features
	HOG
	SVM

	Random Forest

	Results
	Conclusions

